Semiconductor Ultraviolet Optical Sources

LTC John C. Carrano, Ph.D.

Program Manager

DARPA

Microsystems Technology Office

Microsystems Technology Office -

Wide Bandgap Photonics Technology

Program Goals:

- * Demonstrate semiconductor UV optical sources ($\lambda = 280$ nm).
- Compared to current nonsemiconductor approaches
 - Reduce power consumption by 50x
 - Reduce size/weight by >100x

Program Challenges:

- p-type conductivity of UV materials
- Device Innovation
 - Suppress non-radiative recombination
 - Epitaxial uniformity and strain management

Program Notes

- ❖ 48 month program (BAA 01-49)
 - > Phase I (12-18 months) baseline effort
 - Phase II outyears as options
- ❖ Exit Criteria Phase I ⇒ Phase II
- Primary program focus
 - Optoelectronics
 - Spin-offs to bipolar electronics
- Bidders Brief 8 Nov, Austin TX

Technology Challenges

- p-type Conductivity
 - High Al content material
 - Ohmic contacts
- Device Innovation
 - Suppress non-radiative recombination
 - Strain management
 - Novel structures
- Large Band Offsets
 - Reduce turn-on voltage
 - Enhance carrier transport

Program Plan

Task 1: UV Materials Development

- p-type doping (and ohmic contact development)
- Band-gap engineered heterostructures
- Suppress non-radiative recombination

Task 2: Device Innovation

- > 340 nm LED and Laser Diode (NADH)
- > 280 nm LED (Amino Acids, Comms)

Task 3: Integration and Demonstration

- Transceiver test bed
- Bio-detection test bed

Task 1: UV Materials Development

Research Challenges:

- Improve p-type Conductivity
- Reduce Operating Voltage
- Enhance Radiative Efficiency
- Ohmic contact optimization

Task 2: Device Innovation

Research Challenges:

- Novel structures
- Cavity Optimization
- Light Extraction through contact layers
- Uniformity and reproducibility
- Current Injection techniques
- Thermal Management
- Strain and Cracking

Task 3: Integration and Demonstration

- Research Challenges
 - Transceiver test bed development
 - Optical fluorescence test bed
 - Heterogeneous Integration

Phase I Exit Criteria

- Operating wavelength
- Optical output power
- Quantum efficiency
- Operating voltage
- p-type high Al alloy material